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Let {Xn } be a sequence of independent, identically distributed random variables.
Assume that X, has a density function with E(X , ) = 0 and (J~(X,) < :fJ. Call J~(x)
the density of (I/n) L;' I Xi' The Weak Law of Large Numbers gives
S', ,J~(x) dx --> 0 for every i; > 0 whereas Sf~ dx = I. This tells us thal!~ * K --> Kin
the L I metric whenever KEL' ( ·-x,x). This can be readily seen in the case when K
is continuous with compact support. The general case follows by a density
argument as a consequence of Young's inequality. Throughout this paper we show
that if in addition the characteristic function of X, belongs to some class 10', large (1,

then!;, * K converges a.e. to K. Similar results are discussed for the case when (J =, :f,'.

It is shown that these results can be phrased in terms of a more general theorem
concerning approximation units. ' 19K5 Academic Press, Inc

I. STATEMENT OF THE MAIN RESULTS

In what follows we will assume that the random variables have a density.

THEOREM 1, Let {X" f he a sequence oj' identically distrihuted and
independent random variahles such that

(i) E(Xtl = 0, Var(Xtl = I.
Call ¢( u) the characteristic function of' Xl' that is,

¢(u)=r ell/\f(x)dx;

f(x) denotes, as usual, the density oj' XI'
Suppose that for some large'l. > 0, 11'1' have

(ii) ¢EC(~X, x).
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Denote hyf;,(.c) the density ofI'i Xk!n. Then we have

(j) limll.,I'f.f;,(x-y)g(y)dy=g(x) a.e., whenever gEU',
I ~p ~X;.

(jj) If p> I and g*(x) = Sup II If>gl, then

Ilg*II,,< C" Ilgil",

C" independent of g. Here, II II fJ denotes the U' norm and f>g denotes the
convolution product. Denoting hy {x: g(x) > I.} the set of points where g> I.,
\I'e have flir L I the result

(jjj) I{X:g*(X»A}1 < (C/i,) Ilglll where I I denotes Lehesgue
measure and C heing a constant independent of g.

THEOREM 2. Let {XII} he a sequence of independent and identically dis­
trihuted random variahles such that

(i) E(XIl=O, rP(t)EL'(-x, x), large 'Y,

(ii) for some Ii, °< fJ < I and C> 0, we have

Then g* satisfIes

(j) Ilg*II"<C,,!lgll,,, I<p~x.
Here, rP, g*, and g have the same meaning as in Theorem I.

THEOREM 3. Let {kll(x)} he a sequence of integrable functions satisfying

(i) I',kll(x)dx=l,

(ii) I', Ikll(x)1 dx~A.

Suppose that there exists a sequence offunctions hn( t) such that:

(iii) hll(t) continuous increasing and odd (h ll ( -t) = -hn(t)).

(iv) If mll(x) denotes the inverse 0/ hll(t), then the {m~(x)} are
monotone decreasing if x> 0.

(v) Suppose that/or some p, I <p < Xi, we have

1" Ik,,[hn(t)J h;,(tW(I + W) dt < A
" f

" > p - 1 and q = p/(p - 1).
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Then, if g* = SUPn Ik n * gl, we have

(j) l{x:g*(x»iJl < (CP'I) Ilgll;;,
(jj) Ilg*llr<Cr Ilgll" q<r~x.

2. PROOF OF THEOREM
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Consider the kernel function ./;,(x) and its homotetic transformation

(1/~)f;,(x/~). ~ ~
The characteristic function of ( 1/J n)IJx!J n) is

.-
~n(u!vln). (2.1 )

Denoting by D the derivative with respect to u, we are going to show that
the L 1 norm of the functions

D~n(u/~), (2.2)

are bounded from above uniformly.
First, we know that ~(u) is twice continuously differentiable on account

of the existence of the second moment, and this fact automatically implies
the same property for r(u!~).

On the other hand, the existence of the second moment implies

~(u) = I - ~U2 + o(u 2
), (2.3)

(2.4 )

(see Ref. [3, p. 485J), and this and the fact that 1~(u)1 has a UnIque
maximum at u = 0 assure the validity of the estimates

W(u/~)I ~ e CO((2 for lu!,,/~I "'.; C 1

!¢"(u/Jn)1 "'.; (1 -I:)" for lu!vI~1 ~ C 1

where the above bounds hold for all 11 and for suitable values of the con­
stants Co, C 1 , and [;, 0 < Co <~, 0 < I; < 1, C 1 > O. From the estimates (2.4)
we get

r I (U)I .,I ~ ¢/' -r= du "'.; J C (1f((2 du
'-'lul<CI,·t/ vln f

J > _I~"( ~)ldU"'.;(I-t:)1J ~~ff Ir/J(u)!'du
lul->-(I,1I ,,/n

(2.5 )

11 > no > 'Y..

The first and second derivatives are dealt with in a similar manner. For
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instance, the second derivative is readily seen to be dominated In the
following way:

f' (D 2rj/' ( ~)I du"S C (r ,_ lul 2 e (01,,1
2
dU)

01 f ,,/n "11/1«\,"

+Cn 3
/
2 (E(IX,I))2(1-i:l" x 2f' liP(uWdu (2.6)

" ,

+ E(Xn Jr, W' I (fi)1 duo

This holds for large n, say, n > no > a. + 2. One sees immediately that we
have for the last term above the same bound as in (2.5).

From (2.5) and (2.6) and the inversion formula we get

(2.7)

for a constant M independent from x and all n such that n > no.

The above inequality shows that the kernel function f~(x) satisfies the
estimate

/yn
f,,(x) "S M i,

l+(ynx)-
(2.8)

This concludes the proof since the right-hand side is essentially a Poisson
kernel. (See [6, Vol. I, pp. 154, 155].) In the reference the result is proved
for the case of a bounded interval. The general case follows the same lines.

Prool ol Theorem 3. Introducing the change of variables x = h,,(t),
Ik" * g(xo)1 is readily seen to be dominated by

(f 1 Ik,,[h,,(tl] h~(tW dt) 1//, (f' 1 Ig(xo - h,,(t))4 dt) 1/4

+f (1 .. Ik,,[h,,(t)] h;,(tW dt)!!'
o 2' < It I <' 2' , I

x(f Ig(Xo-h,,(t))I4dt)L'I.
III < 21<. + I

(2.9)

The expressions involving g can be dealt with in the following manner:
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Call

Using the fact that m~(x) is monotone decreasing, an integration by parts
gIves

r
hn(2k + 1j fhn(2k+lj
'hn(_2k'I)lg(xo-xWm~(lxl)dx~M~(xo)2 0 m'(x)dx

= M~(xo)2k + 2. (2.11)

The above step is justified by an application of Lemma 7.1 and Theorem
7.5 of Ref. [6, Vol. I, pp. 154, 155]. Similar estimates hold for

(2.12 )

On account of (2.10), (2.11), and (2.12) we get for (2.9) the estimate

(2.13 )

Equation (2.13) and an application of the Hardy-Littlewood theorem (see
[6, Vol. I, p. 32]) finish the proof.

Proof of Theorem 2. The proof of this theorem will be a consequence of
Theorem 3. If fn(x) denotes the density of (lIn) I.7 Xi we shall show that if
n is large enough and q> 2 we will have

(2.14 )

That is, the role of the hn(t) will be played by tln 8
. The above inequality

will be proven by using the Haussdorf-Young theorem for Fourier
integrals (see [6, Vol. II, p. 254]) after proving an associated inequality for
the characteristic functions.

The characteristic associated with the density (1/n 8 )fn(xln8
) is

(2.15 )
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Condition (ii) of the hypothesis implies that for n > no

(2.16)

if lui < (5n) and

(2.17)

if iul > (5. nr
. In the same manner we obtain for the derivative D<r(u/n)) the

estimates

(2.18)

and

(2.19)

The inequalities (2.16), (2.17), (2.18), and (2.19) give

(2.20)

for n > no, p = q/(q - 1). An application of the Haussdorf~Young inequality
gives (2.14) from (2.20). This concludes the proof of Theorem 2.

3. FINAL REMARKS

Theorem 3, or a similar type of result, seems to be the tool to handle
convolution kernels of the form

en r q/'(x ~ t) g(t) dt (3.1 )

where <p(t) is such that <p(0) = I, <p(t) continuous, integrable, and 1<p(t)1 < I
if Itl > O. en is a normalizing factor so that

Cnf', <pn(t)dt=1. (3.2)
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In the special case when
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(3.3 )

the natural choice of the functions {hn(t)} is hn(t) = tin l/fi. Operators of the
type (3.1) were first treated by Hans Hahn in a famous memoir published
by the Academy of Sciences of Vienna in 1916; its translated title is "On the
Representation of Functions through Singular Integrals." Operators of a
similar type have been treated independently but later by Perron 1[4] and
Widder [5].
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